56 research outputs found

    The defect correction approach

    Get PDF

    Critical Susceptibility Exponent Measured from Fe/W(110) Bilayers

    Full text link
    The critical phase transition in ferromagnetic ultrathin Fe/W(110) films has been studied using the magnetic ac susceptibility. A statistically objective, unconstrained fitting of the susceptibility is used to extract values for the critical exponent (gamma), the critical temperature Tc, the critical amplitude (chi_o) and the range of temperature that exhibits power-law behaviour. A fitting algorithm was used to simultaneously minimize the statistical variance of a power law fit to individual experimental measurements of chi(T). This avoids systematic errors and generates objective fitting results. An ensemble of 25 measurements on many different films are analyzed. Those which permit an extended fitting range in reduced temperature lower than approximately .00475 give an average value gamma=1.76+-0.01. Bilayer films give a weighted average value of gamma = 1.75+-0.02. These results are in agreement with the -dimensional Ising exponent gamma= 7/4. Measurements that do not exhibit power-law scaling as close to Tc (especially films of thickness 1.75ML) show a value of gamma higher than the Ising value. Several possibilities are considered to account for this behaviour.Comment: -Submitted to Phys. Rev. B -Revtex4 Format -6 postscript figure

    An integral method for solving nonlinear eigenvalue problems

    Full text link
    We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least kk column vectors, where kk is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show that the original nonlinear eigenvalue problem reduces to a linear eigenvalue problem of dimension kk. No initial approximations of eigenvalues and eigenvectors are needed. The method is particularly suitable for moderately large eigenvalue problems where kk is much smaller than the matrix dimension. We also give an extension of the method to the case where kk is larger than the matrix dimension. The quadrature errors caused by the trapezoid sum are discussed for the case of analytic closed contours. Using well known techniques it is shown that the error decays exponentially with an exponent given by the product of the number of quadrature points and the minimal distance of the eigenvalues to the contour

    Semidefinite Characterization and Computation of Real Radical Ideals

    Full text link
    For an ideal IR[x]I\subseteq\mathbb{R}[x] given by a set of generators, a new semidefinite characterization of its real radical I(VR(I))I(V_\mathbb{R}(I)) is presented, provided it is zero-dimensional (even if II is not). Moreover we propose an algorithm using numerical linear algebra and semidefinite optimization techniques, to compute all (finitely many) points of the real variety VR(I)V_\mathbb{R}(I) as well as a set of generators of the real radical ideal. The latter is obtained in the form of a border or Gr\"obner basis. The algorithm is based on moment relaxations and, in contrast to other existing methods, it exploits the real algebraic nature of the problem right from the beginning and avoids the computation of complex components.Comment: 41 page

    Defect corrections and multigrid iterations

    No full text
    corecore